Mister Exam

Other calculators


(sinx)^7

Integral of (sinx)^7 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     7      
 |  sin (x) dx
 |            
/             
0             
01sin7(x)dx\int\limits_{0}^{1} \sin^{7}{\left(x \right)}\, dx
Integral(sin(x)^7, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin7(x)=(1cos2(x))3sin(x)\sin^{7}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (1cos2(x))3sin(x)=sin(x)cos6(x)+3sin(x)cos4(x)3sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos6(x))dx=sin(x)cos6(x)dx\int \left(- \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u6)du\int \left(- u^{6}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: cos7(x)7\frac{\cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3sin(x)cos4(x)dx=3sin(x)cos4(x)dx\int 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u4)du\int \left(- u^{4}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 3cos5(x)5- \frac{3 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin(x)cos2(x))dx=3sin(x)cos2(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: cos3(x)\cos^{3}{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos7(x)73cos5(x)5+cos3(x)cos(x)\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))3sin(x)=sin(x)cos6(x)+3sin(x)cos4(x)3sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos6(x))dx=sin(x)cos6(x)dx\int \left(- \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u6)du\int \left(- u^{6}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: cos7(x)7\frac{\cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3sin(x)cos4(x)dx=3sin(x)cos4(x)dx\int 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u4)du\int \left(- u^{4}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 3cos5(x)5- \frac{3 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin(x)cos2(x))dx=3sin(x)cos2(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: cos3(x)\cos^{3}{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos7(x)73cos5(x)5+cos3(x)cos(x)\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

  3. Add the constant of integration:

    cos7(x)73cos5(x)5+cos3(x)cos(x)+constant\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

cos7(x)73cos5(x)5+cos3(x)cos(x)+constant\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                          5         7   
 |    7                3               3*cos (x)   cos (x)
 | sin (x) dx = C + cos (x) - cos(x) - --------- + -------
 |                                         5          7   
/                                                         
sin7(x)dx=C+cos7(x)73cos5(x)5+cos3(x)cos(x)\int \sin^{7}{\left(x \right)}\, dx = C + \frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
                             5         7   
16      3               3*cos (1)   cos (1)
-- + cos (1) - cos(1) - --------- + -------
35                          5          7   
cos(1)3cos5(1)5+cos7(1)7+cos3(1)+1635- \cos{\left(1 \right)} - \frac{3 \cos^{5}{\left(1 \right)}}{5} + \frac{\cos^{7}{\left(1 \right)}}{7} + \cos^{3}{\left(1 \right)} + \frac{16}{35}
=
=
                             5         7   
16      3               3*cos (1)   cos (1)
-- + cos (1) - cos(1) - --------- + -------
35                          5          7   
cos(1)3cos5(1)5+cos7(1)7+cos3(1)+1635- \cos{\left(1 \right)} - \frac{3 \cos^{5}{\left(1 \right)}}{5} + \frac{\cos^{7}{\left(1 \right)}}{7} + \cos^{3}{\left(1 \right)} + \frac{16}{35}
16/35 + cos(1)^3 - cos(1) - 3*cos(1)^5/5 + cos(1)^7/7
Numerical answer [src]
0.0488623115305527
0.0488623115305527
The graph
Integral of (sinx)^7 dx

    Use the examples entering the upper and lower limits of integration.