Mister Exam

Other calculators

Integral of 1/(xlg(x))^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -2              
 e                
  /               
 |                
 |       1        
 |  ----------- dx
 |            3   
 |  (x*log(x))    
 |                
/                 
0                 
$$\int\limits_{0}^{e^{-2}} \frac{1}{\left(x \log{\left(x \right)}\right)^{3}}\, dx$$
Integral(1/((x*log(x))^3), (x, 0, exp(-2)))
The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |      1                                 -1 + 2*log(x)
 | ----------- dx = C + 2*Ei(-2*log(x)) + -------------
 |           3                                2    2   
 | (x*log(x))                              2*x *log (x)
 |                                                     
/                                                      
$$\int \frac{1}{\left(x \log{\left(x \right)}\right)^{3}}\, dx = C + 2 \operatorname{Ei}{\left(- 2 \log{\left(x \right)} \right)} + \frac{2 \log{\left(x \right)} - 1}{2 x^{2} \log{\left(x \right)}^{2}}$$
The answer [src]
-oo + 2*Ei(4)
$$-\infty + 2 \operatorname{Ei}{\left(4 \right)}$$
=
=
-oo + 2*Ei(4)
$$-\infty + 2 \operatorname{Ei}{\left(4 \right)}$$
-oo + 2*Ei(4)
Numerical answer [src]
-5.30161292893295e+34
-5.30161292893295e+34

    Use the examples entering the upper and lower limits of integration.