Integral of 1/(x(x+2)^(1/2)) dx
The solution
The answer (Indefinite)
[src]
// / ___ _______\ \
/ || ___ |\/ 2 *\/ 2 + x | |2 + x| |
| ||-\/ 2 *acoth|---------------| for ------- > 1|
| 1 || \ 2 / 2 |
| ----------- dx = C + |< |
| _______ || / ___ _______\ |
| x*\/ x + 2 || ___ |\/ 2 *\/ 2 + x | |
| ||-\/ 2 *atanh|---------------| otherwise |
/ \\ \ 2 / /
∫xx+21dx=C+⎩⎨⎧−2acoth(22x+2)−2atanh(22x+2)for2∣x+2∣>1otherwise
The graph
/ ___\
___ |\/ 2 |
-\/ 2 *atanh|-----|
\ 2 /
−2atanh(22)
=
/ ___\
___ |\/ 2 |
-\/ 2 *atanh|-----|
\ 2 /
−2atanh(22)
-sqrt(2)*atanh(sqrt(2)/2)
Use the examples entering the upper and lower limits of integration.