Mister Exam

Other calculators

Integral of 1/(x(x+2)^(1/2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1               
  /               
 |                
 |       1        
 |  ----------- dx
 |      _______   
 |  x*\/ x + 2    
 |                
/                 
-2                
$$\int\limits_{-2}^{-1} \frac{1}{x \sqrt{x + 2}}\, dx$$
Integral(1/(x*sqrt(x + 2)), (x, -2, -1))
The answer (Indefinite) [src]
                        //            /  ___   _______\                 \
  /                     ||   ___      |\/ 2 *\/ 2 + x |      |2 + x|    |
 |                      ||-\/ 2 *acoth|---------------|  for ------- > 1|
 |      1               ||            \       2       /         2       |
 | ----------- dx = C + |<                                              |
 |     _______          ||            /  ___   _______\                 |
 | x*\/ x + 2           ||   ___      |\/ 2 *\/ 2 + x |                 |
 |                      ||-\/ 2 *atanh|---------------|     otherwise   |
/                       \\            \       2       /                 /
$$\int \frac{1}{x \sqrt{x + 2}}\, dx = C + \begin{cases} - \sqrt{2} \operatorname{acoth}{\left(\frac{\sqrt{2} \sqrt{x + 2}}{2} \right)} & \text{for}\: \frac{\left|{x + 2}\right|}{2} > 1 \\- \sqrt{2} \operatorname{atanh}{\left(\frac{\sqrt{2} \sqrt{x + 2}}{2} \right)} & \text{otherwise} \end{cases}$$
The graph
The answer [src]
            /  ___\
   ___      |\/ 2 |
-\/ 2 *atanh|-----|
            \  2  /
$$- \sqrt{2} \operatorname{atanh}{\left(\frac{\sqrt{2}}{2} \right)}$$
=
=
            /  ___\
   ___      |\/ 2 |
-\/ 2 *atanh|-----|
            \  2  /
$$- \sqrt{2} \operatorname{atanh}{\left(\frac{\sqrt{2}}{2} \right)}$$
-sqrt(2)*atanh(sqrt(2)/2)
Numerical answer [src]
-1.24645048001522
-1.24645048001522

    Use the examples entering the upper and lower limits of integration.