Mister Exam

Other calculators

Integral of 1/(x*(x-1)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |        1        
 |  1*---------- dx
 |             2   
 |    x*(x - 1)    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \left(x - 1\right)^{2}}\, dx$$
Integral(1/(x*(x - 1*1)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |       1                 1                          
 | 1*---------- dx = C - ------ - log(-1 + x) + log(x)
 |            2          -1 + x                       
 |   x*(x - 1)                                        
 |                                                    
/                                                     
$$\log x-{{1}\over{x-1}}-\log \left(x-1\right)$$
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
1.38019561125665e+19
1.38019561125665e+19

    Use the examples entering the upper and lower limits of integration.