Mister Exam

Other calculators

Integral of 1/(x^2+6*x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |   2             
 |  x  + 6*x + 4   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(x^{2} + 6 x\right) + 4}\, dx$$
Integral(1/(x^2 + 6*x + 4), (x, 0, 1))
The answer (Indefinite) [src]
                         //            /  ___        \                   \
                         ||   ___      |\/ 5 *(3 + x)|                   |
                         ||-\/ 5 *acoth|-------------|                   |
  /                      ||            \      5      /              2    |
 |                       ||----------------------------  for (3 + x)  > 5|
 |      1                ||             5                                |
 | ------------ dx = C + |<                                              |
 |  2                    ||            /  ___        \                   |
 | x  + 6*x + 4          ||   ___      |\/ 5 *(3 + x)|                   |
 |                       ||-\/ 5 *atanh|-------------|                   |
/                        ||            \      5      /              2    |
                         ||----------------------------  for (3 + x)  < 5|
                         \\             5                                /
$$\int \frac{1}{\left(x^{2} + 6 x\right) + 4}\, dx = C + \begin{cases} - \frac{\sqrt{5} \operatorname{acoth}{\left(\frac{\sqrt{5} \left(x + 3\right)}{5} \right)}}{5} & \text{for}\: \left(x + 3\right)^{2} > 5 \\- \frac{\sqrt{5} \operatorname{atanh}{\left(\frac{\sqrt{5} \left(x + 3\right)}{5} \right)}}{5} & \text{for}\: \left(x + 3\right)^{2} < 5 \end{cases}$$
The graph
The answer [src]
    ___    /      ___\     ___    /      ___\     ___    /      ___\     ___    /      ___\
  \/ 5 *log\3 - \/ 5 /   \/ 5 *log\4 + \/ 5 /   \/ 5 *log\3 + \/ 5 /   \/ 5 *log\4 - \/ 5 /
- -------------------- - -------------------- + -------------------- + --------------------
           10                     10                     10                     10         
$$- \frac{\sqrt{5} \log{\left(\sqrt{5} + 4 \right)}}{10} - \frac{\sqrt{5} \log{\left(3 - \sqrt{5} \right)}}{10} + \frac{\sqrt{5} \log{\left(4 - \sqrt{5} \right)}}{10} + \frac{\sqrt{5} \log{\left(\sqrt{5} + 3 \right)}}{10}$$
=
=
    ___    /      ___\     ___    /      ___\     ___    /      ___\     ___    /      ___\
  \/ 5 *log\3 - \/ 5 /   \/ 5 *log\4 + \/ 5 /   \/ 5 *log\3 + \/ 5 /   \/ 5 *log\4 - \/ 5 /
- -------------------- - -------------------- + -------------------- + --------------------
           10                     10                     10                     10         
$$- \frac{\sqrt{5} \log{\left(\sqrt{5} + 4 \right)}}{10} - \frac{\sqrt{5} \log{\left(3 - \sqrt{5} \right)}}{10} + \frac{\sqrt{5} \log{\left(4 - \sqrt{5} \right)}}{10} + \frac{\sqrt{5} \log{\left(\sqrt{5} + 3 \right)}}{10}$$
-sqrt(5)*log(3 - sqrt(5))/10 - sqrt(5)*log(4 + sqrt(5))/10 + sqrt(5)*log(3 + sqrt(5))/10 + sqrt(5)*log(4 - sqrt(5))/10
Numerical answer [src]
0.148037285939134
0.148037285939134

    Use the examples entering the upper and lower limits of integration.