Mister Exam

Other calculators

Integral of 1/(x^2+6x-16) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |   2              
 |  x  + 6*x - 16   
 |                  
/                   
10                  
$$\int\limits_{10}^{\infty} \frac{1}{\left(x^{2} + 6 x\right) - 16}\, dx$$
Integral(1/(x^2 + 6*x - 16), (x, 10, oo))
The answer (Indefinite) [src]
  /                                               
 |                                                
 |       1                log(8 + x)   log(-2 + x)
 | ------------- dx = C - ---------- + -----------
 |  2                         10            10    
 | x  + 6*x - 16                                  
 |                                                
/                                                 
$$\int \frac{1}{\left(x^{2} + 6 x\right) - 16}\, dx = C + \frac{\log{\left(x - 2 \right)}}{10} - \frac{\log{\left(x + 8 \right)}}{10}$$
The graph
The answer [src]
  log(8)   log(18)
- ------ + -------
    10        10  
$$- \frac{\log{\left(8 \right)}}{10} + \frac{\log{\left(18 \right)}}{10}$$
=
=
  log(8)   log(18)
- ------ + -------
    10        10  
$$- \frac{\log{\left(8 \right)}}{10} + \frac{\log{\left(18 \right)}}{10}$$
-log(8)/10 + log(18)/10

    Use the examples entering the upper and lower limits of integration.