Mister Exam

Integral of arcctg(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  acot(x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \operatorname{acot}{\left(x \right)}\, dx$$
Integral(acot(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                    /     2\            
 |                  log\1 + x /            
 | acot(x) dx = C + ----------- + x*acot(x)
 |                       2                 
/                                          
$$\int \operatorname{acot}{\left(x \right)}\, dx = C + x \operatorname{acot}{\left(x \right)} + \frac{\log{\left(x^{2} + 1 \right)}}{2}$$
The graph
The answer [src]
log(2)   pi
------ + --
  2      4 
$$\frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
=
=
log(2)   pi
------ + --
  2      4 
$$\frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
log(2)/2 + pi/4
Numerical answer [src]
1.13197175367742
1.13197175367742
The graph
Integral of arcctg(x) dx

    Use the examples entering the upper and lower limits of integration.