Mister Exam

Other calculators

Integral of 1/(x^2-8x-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |   2             
 |  x  - 8*x - 9   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(x^{2} - 8 x\right) - 9}\, dx$$
Integral(1/(x^2 - 8*x - 9), (x, 0, 1))
The answer (Indefinite) [src]
  /                                              
 |                                               
 |      1                log(1 + x)   log(-9 + x)
 | ------------ dx = C - ---------- + -----------
 |  2                        10            10    
 | x  - 8*x - 9                                  
 |                                               
/                                                
$$\int \frac{1}{\left(x^{2} - 8 x\right) - 9}\, dx = C + \frac{\log{\left(x - 9 \right)}}{10} - \frac{\log{\left(x + 1 \right)}}{10}$$
The graph
The answer [src]
  log(2)   log(9)   log(8)
- ------ - ------ + ------
    10       10       10  
$$- \frac{\log{\left(9 \right)}}{10} - \frac{\log{\left(2 \right)}}{10} + \frac{\log{\left(8 \right)}}{10}$$
=
=
  log(2)   log(9)   log(8)
- ------ - ------ + ------
    10       10       10  
$$- \frac{\log{\left(9 \right)}}{10} - \frac{\log{\left(2 \right)}}{10} + \frac{\log{\left(8 \right)}}{10}$$
-log(2)/10 - log(9)/10 + log(8)/10
Numerical answer [src]
-0.0810930216216329
-0.0810930216216329

    Use the examples entering the upper and lower limits of integration.