Mister Exam

Other calculators

Integral of 1/(x^2-4x-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                
  /                
 |                 
 |       1         
 |  ------------ dx
 |   2             
 |  x  - 4*x - 5   
 |                 
/                  
-oo                
1(x24x)5dx\int\limits_{-\infty}^{\infty} \frac{1}{\left(x^{2} - 4 x\right) - 5}\, dx
Integral(1/(x^2 - 4*x - 5), (x, -oo, oo))
The answer (Indefinite) [src]
  /                                              
 |                                               
 |      1                log(1 + x)   log(-5 + x)
 | ------------ dx = C - ---------- + -----------
 |  2                        6             6     
 | x  - 4*x - 5                                  
 |                                               
/                                                
1(x24x)5dx=C+log(x5)6log(x+1)6\int \frac{1}{\left(x^{2} - 4 x\right) - 5}\, dx = C + \frac{\log{\left(x - 5 \right)}}{6} - \frac{\log{\left(x + 1 \right)}}{6}
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.02-0.02
The answer [src]
nan
NaN\text{NaN}
=
=
nan
NaN\text{NaN}
nan

    Use the examples entering the upper and lower limits of integration.