Mister Exam

Other calculators

Integral of 1/(x^2-12x+35) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |   2               
 |  x  - 12*x + 35   
 |                   
/                    
0                    
011(x212x)+35dx\int\limits_{0}^{1} \frac{1}{\left(x^{2} - 12 x\right) + 35}\, dx
Integral(1/(x^2 - 12*x + 35), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                 
 |                                                  
 |       1                 log(-7 + x)   log(-5 + x)
 | -------------- dx = C + ----------- - -----------
 |  2                           2             2     
 | x  - 12*x + 35                                   
 |                                                  
/                                                   
1(x212x)+35dx=C+log(x7)2log(x5)2\int \frac{1}{\left(x^{2} - 12 x\right) + 35}\, dx = C + \frac{\log{\left(x - 7 \right)}}{2} - \frac{\log{\left(x - 5 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.4
The answer [src]
log(5)   log(6)   log(4)   log(7)
------ + ------ - ------ - ------
  2        2        2        2   
log(7)2log(4)2+log(5)2+log(6)2- \frac{\log{\left(7 \right)}}{2} - \frac{\log{\left(4 \right)}}{2} + \frac{\log{\left(5 \right)}}{2} + \frac{\log{\left(6 \right)}}{2}
=
=
log(5)   log(6)   log(4)   log(7)
------ + ------ - ------ - ------
  2        2        2        2   
log(7)2log(4)2+log(5)2+log(6)2- \frac{\log{\left(7 \right)}}{2} - \frac{\log{\left(4 \right)}}{2} + \frac{\log{\left(5 \right)}}{2} + \frac{\log{\left(6 \right)}}{2}
log(5)/2 + log(6)/2 - log(4)/2 - log(7)/2
Numerical answer [src]
0.0344964357434757
0.0344964357434757

    Use the examples entering the upper and lower limits of integration.