Integral of 1/(xsqrt(x-16)) dx
The solution
The answer (Indefinite)
[src]
// / 4 \ \
||I*acosh|-----| |
|| | ___| |
/ || \\/ x / 16 |
| ||-------------- for --- > 1|
| 1 || 2 |x| |
| ------------ dx = C + |< |
| ________ || / 4 \ |
| x*\/ x - 16 ||-asin|-----| |
| || | ___| |
/ || \\/ x / |
||------------- otherwise |
\\ 2 /
∫xx−161dx=C+⎩⎨⎧2iacosh(x4)−2asin(x4)for∣x∣16>1otherwise
The graph
I*acosh(4)
-oo*I + ----------
2
−∞i+2iacosh(4)
=
I*acosh(4)
-oo*I + ----------
2
−∞i+2iacosh(4)
(0.0 - 11.0306137698904j)
(0.0 - 11.0306137698904j)
Use the examples entering the upper and lower limits of integration.