Mister Exam

Other calculators

Integral of 1/(xsqrt(x-16)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |      ________   
 |  x*\/ x - 16    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{x - 16}}\, dx$$
Integral(1/(x*sqrt(x - 16)), (x, 0, 1))
The answer (Indefinite) [src]
                         //       /  4  \             \
                         ||I*acosh|-----|             |
                         ||       |  ___|             |
  /                      ||       \\/ x /       16    |
 |                       ||--------------  for --- > 1|
 |      1                ||      2             |x|    |
 | ------------ dx = C + |<                           |
 |     ________          ||     /  4  \               |
 | x*\/ x - 16           ||-asin|-----|               |
 |                       ||     |  ___|               |
/                        ||     \\/ x /               |
                         ||-------------    otherwise |
                         \\      2                    /
$$\int \frac{1}{x \sqrt{x - 16}}\, dx = C + \begin{cases} \frac{i \operatorname{acosh}{\left(\frac{4}{\sqrt{x}} \right)}}{2} & \text{for}\: \frac{16}{\left|{x}\right|} > 1 \\- \frac{\operatorname{asin}{\left(\frac{4}{\sqrt{x}} \right)}}{2} & \text{otherwise} \end{cases}$$
The graph
The answer [src]
        I*acosh(4)
-oo*I + ----------
            2     
$$- \infty i + \frac{i \operatorname{acosh}{\left(4 \right)}}{2}$$
=
=
        I*acosh(4)
-oo*I + ----------
            2     
$$- \infty i + \frac{i \operatorname{acosh}{\left(4 \right)}}{2}$$
-oo*i + i*acosh(4)/2
Numerical answer [src]
(0.0 - 11.0306137698904j)
(0.0 - 11.0306137698904j)

    Use the examples entering the upper and lower limits of integration.