Mister Exam

Other calculators

Integral of 1/x(sqrt2x-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _____       
 |  \/ 2*x  - 9   
 |  ----------- dx
 |       x        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sqrt{2 x} - 9}{x}\, dx$$
Integral((sqrt(2*x) - 9)/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                          
 |                                                           
 |   _____                                                   
 | \/ 2*x  - 9                /    ___   ___\       ___   ___
 | ----------- dx = C - 18*log\2*\/ 2 *\/ x / + 2*\/ 2 *\/ x 
 |      x                                                    
 |                                                           
/                                                            
$$\int \frac{\sqrt{2 x} - 9}{x}\, dx = C + 2 \sqrt{2} \sqrt{x} - 18 \log{\left(2 \sqrt{2} \sqrt{x} \right)}$$
The graph
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-393.98558808194
-393.98558808194

    Use the examples entering the upper and lower limits of integration.