1 / | | 1 | ------------- dx | ___ | x*\/ 2 *x - 9 | / 0
Integral(1/(x*(sqrt(2)*x) - 9), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=sqrt(2), c=-9, context=1/(x*(sqrt(2)*x) - 9), symbol=x), False), (ArccothRule(a=1, b=sqrt(2), c=-9, context=1/(x*(sqrt(2)*x) - 9), symbol=x), x**2 > 9*sqrt(2)/2), (ArctanhRule(a=1, b=sqrt(2), c=-9, context=1/(x*(sqrt(2)*x) - 9), symbol=x), x**2 < 9*sqrt(2)/2)], context=1/(x*(sqrt(2)*x) - 9), symbol=x)
Add the constant of integration:
The answer is:
// / 4 ___\ \ || 3/4 |x*\/ 2 | | ||-2 *acoth|-------| ___| / || \ 3 / 2 9*\/ 2 | | ||--------------------- for x > -------| | 1 || 6 2 | | ------------- dx = C + |< | | ___ || / 4 ___\ | | x*\/ 2 *x - 9 || 3/4 |x*\/ 2 | | | ||-2 *atanh|-------| ___| / || \ 3 / 2 9*\/ 2 | ||--------------------- for x < -------| \\ 6 2 /
/ / 3/4\\ / 3/4\ / / 3/4\\ / 3/4\ 3/4 | |3*2 || 3/4 | 3*2 | 3/4 | | 3*2 || 3/4 |3*2 | 2 *|pi*I + log|------|| 2 *log|1 + ------| 2 *|pi*I + log|-1 + ------|| 2 *log|------| \ \ 2 // \ 2 / \ \ 2 // \ 2 / - ------------------------- - -------------------- + ------------------------------ + ---------------- 12 12 12 12
=
/ / 3/4\\ / 3/4\ / / 3/4\\ / 3/4\ 3/4 | |3*2 || 3/4 | 3*2 | 3/4 | | 3*2 || 3/4 |3*2 | 2 *|pi*I + log|------|| 2 *log|1 + ------| 2 *|pi*I + log|-1 + ------|| 2 *log|------| \ \ 2 // \ 2 / \ \ 2 // \ 2 / - ------------------------- - -------------------- + ------------------------------ + ---------------- 12 12 12 12
-2^(3/4)*(pi*i + log(3*2^(3/4)/2))/12 - 2^(3/4)*log(1 + 3*2^(3/4)/2)/12 + 2^(3/4)*(pi*i + log(-1 + 3*2^(3/4)/2))/12 + 2^(3/4)*log(3*2^(3/4)/2)/12
Use the examples entering the upper and lower limits of integration.