Mister Exam

Other calculators

Integral of 1/(x+(lnx)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo               
  /               
 |                
 |       1        
 |  ----------- dx
 |         2      
 |  x + log (x)   
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \frac{1}{x + \log{\left(x \right)}^{2}}\, dx$$
Integral(1/(x + log(x)^2), (x, 1, oo))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 |      1                |      1        
 | ----------- dx = C +  | ----------- dx
 |        2              |        2      
 | x + log (x)           | x + log (x)   
 |                       |               
/                       /                
$$\int \frac{1}{x + \log{\left(x \right)}^{2}}\, dx = C + \int \frac{1}{x + \log{\left(x \right)}^{2}}\, dx$$
The answer [src]
 oo               
  /               
 |                
 |       1        
 |  ----------- dx
 |         2      
 |  x + log (x)   
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \frac{1}{x + \log{\left(x \right)}^{2}}\, dx$$
=
=
 oo               
  /               
 |                
 |       1        
 |  ----------- dx
 |         2      
 |  x + log (x)   
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \frac{1}{x + \log{\left(x \right)}^{2}}\, dx$$
Integral(1/(x + log(x)^2), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.