Mister Exam

Other calculators

Integral of 1/((x+4)ln(x+4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  b                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |  (x + 4)*log(x + 4)   
 |                       
/                        
1                        
$$\int\limits_{1}^{b} \frac{1}{\left(x + 4\right) \log{\left(x + 4 \right)}}\, dx$$
Integral(1/((x + 4)*log(x + 4)), (x, 1, b))
The answer (Indefinite) [src]
  /                                           
 |                                            
 |         1                                  
 | ------------------ dx = C + log(log(4 + x))
 | (x + 4)*log(x + 4)                         
 |                                            
/                                             
$$\int \frac{1}{\left(x + 4\right) \log{\left(x + 4 \right)}}\, dx = C + \log{\left(\log{\left(x + 4 \right)} \right)}$$
The answer [src]
-log(log(5)) + log(log(4 + b))
$$\log{\left(\log{\left(b + 4 \right)} \right)} - \log{\left(\log{\left(5 \right)} \right)}$$
=
=
-log(log(5)) + log(log(4 + b))
$$\log{\left(\log{\left(b + 4 \right)} \right)} - \log{\left(\log{\left(5 \right)} \right)}$$
-log(log(5)) + log(log(4 + b))

    Use the examples entering the upper and lower limits of integration.