Mister Exam

Other calculators

Integral of 1/(x*(x+2)*(x+3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |  x*(x + 2)*(x + 3)   
 |                      
/                       
0                       
011x(x+2)(x+3)dx\int\limits_{0}^{1} \frac{1}{x \left(x + 2\right) \left(x + 3\right)}\, dx
Integral(1/((x*(x + 2))*(x + 3)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      1x(x+2)(x+3)=13(x+3)12(x+2)+16x\frac{1}{x \left(x + 2\right) \left(x + 3\right)} = \frac{1}{3 \left(x + 3\right)} - \frac{1}{2 \left(x + 2\right)} + \frac{1}{6 x}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        13(x+3)dx=1x+3dx3\int \frac{1}{3 \left(x + 3\right)}\, dx = \frac{\int \frac{1}{x + 3}\, dx}{3}

        1. Let u=x+3u = x + 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+3)\log{\left(x + 3 \right)}

        So, the result is: log(x+3)3\frac{\log{\left(x + 3 \right)}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12(x+2))dx=1x+2dx2\int \left(- \frac{1}{2 \left(x + 2\right)}\right)\, dx = - \frac{\int \frac{1}{x + 2}\, dx}{2}

        1. Let u=x+2u = x + 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+2)\log{\left(x + 2 \right)}

        So, the result is: log(x+2)2- \frac{\log{\left(x + 2 \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        16xdx=1xdx6\int \frac{1}{6 x}\, dx = \frac{\int \frac{1}{x}\, dx}{6}

        1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

        So, the result is: log(x)6\frac{\log{\left(x \right)}}{6}

      The result is: log(x)6log(x+2)2+log(x+3)3\frac{\log{\left(x \right)}}{6} - \frac{\log{\left(x + 2 \right)}}{2} + \frac{\log{\left(x + 3 \right)}}{3}

    Method #2

    1. Rewrite the integrand:

      1x(x+2)(x+3)=1x3+5x2+6x\frac{1}{x \left(x + 2\right) \left(x + 3\right)} = \frac{1}{x^{3} + 5 x^{2} + 6 x}

    2. Rewrite the integrand:

      1x3+5x2+6x=13(x+3)12(x+2)+16x\frac{1}{x^{3} + 5 x^{2} + 6 x} = \frac{1}{3 \left(x + 3\right)} - \frac{1}{2 \left(x + 2\right)} + \frac{1}{6 x}

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        13(x+3)dx=1x+3dx3\int \frac{1}{3 \left(x + 3\right)}\, dx = \frac{\int \frac{1}{x + 3}\, dx}{3}

        1. Let u=x+3u = x + 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+3)\log{\left(x + 3 \right)}

        So, the result is: log(x+3)3\frac{\log{\left(x + 3 \right)}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12(x+2))dx=1x+2dx2\int \left(- \frac{1}{2 \left(x + 2\right)}\right)\, dx = - \frac{\int \frac{1}{x + 2}\, dx}{2}

        1. Let u=x+2u = x + 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+2)\log{\left(x + 2 \right)}

        So, the result is: log(x+2)2- \frac{\log{\left(x + 2 \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        16xdx=1xdx6\int \frac{1}{6 x}\, dx = \frac{\int \frac{1}{x}\, dx}{6}

        1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

        So, the result is: log(x)6\frac{\log{\left(x \right)}}{6}

      The result is: log(x)6log(x+2)2+log(x+3)3\frac{\log{\left(x \right)}}{6} - \frac{\log{\left(x + 2 \right)}}{2} + \frac{\log{\left(x + 3 \right)}}{3}

    Method #3

    1. Rewrite the integrand:

      1x(x+2)(x+3)=1x3+5x2+6x\frac{1}{x \left(x + 2\right) \left(x + 3\right)} = \frac{1}{x^{3} + 5 x^{2} + 6 x}

    2. Rewrite the integrand:

      1x3+5x2+6x=13(x+3)12(x+2)+16x\frac{1}{x^{3} + 5 x^{2} + 6 x} = \frac{1}{3 \left(x + 3\right)} - \frac{1}{2 \left(x + 2\right)} + \frac{1}{6 x}

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        13(x+3)dx=1x+3dx3\int \frac{1}{3 \left(x + 3\right)}\, dx = \frac{\int \frac{1}{x + 3}\, dx}{3}

        1. Let u=x+3u = x + 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+3)\log{\left(x + 3 \right)}

        So, the result is: log(x+3)3\frac{\log{\left(x + 3 \right)}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12(x+2))dx=1x+2dx2\int \left(- \frac{1}{2 \left(x + 2\right)}\right)\, dx = - \frac{\int \frac{1}{x + 2}\, dx}{2}

        1. Let u=x+2u = x + 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+2)\log{\left(x + 2 \right)}

        So, the result is: log(x+2)2- \frac{\log{\left(x + 2 \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        16xdx=1xdx6\int \frac{1}{6 x}\, dx = \frac{\int \frac{1}{x}\, dx}{6}

        1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

        So, the result is: log(x)6\frac{\log{\left(x \right)}}{6}

      The result is: log(x)6log(x+2)2+log(x+3)3\frac{\log{\left(x \right)}}{6} - \frac{\log{\left(x + 2 \right)}}{2} + \frac{\log{\left(x + 3 \right)}}{3}

  2. Add the constant of integration:

    log(x)6log(x+2)2+log(x+3)3+constant\frac{\log{\left(x \right)}}{6} - \frac{\log{\left(x + 2 \right)}}{2} + \frac{\log{\left(x + 3 \right)}}{3}+ \mathrm{constant}


The answer is:

log(x)6log(x+2)2+log(x+3)3+constant\frac{\log{\left(x \right)}}{6} - \frac{\log{\left(x + 2 \right)}}{2} + \frac{\log{\left(x + 3 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                           
 |                                                            
 |         1                  log(2 + x)   log(3 + x)   log(x)
 | ----------------- dx = C - ---------- + ---------- + ------
 | x*(x + 2)*(x + 3)              2            3          6   
 |                                                            
/                                                             
1x(x+2)(x+3)dx=C+log(x)6log(x+2)2+log(x+3)3\int \frac{1}{x \left(x + 2\right) \left(x + 3\right)}\, dx = C + \frac{\log{\left(x \right)}}{6} - \frac{\log{\left(x + 2 \right)}}{2} + \frac{\log{\left(x + 3 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-20002000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
7.24156915909533
7.24156915909533

    Use the examples entering the upper and lower limits of integration.