Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of sin²xcos²x Integral of sin²xcos²x
  • Integral of tg2x Integral of tg2x
  • Integral of 1/(x^2-9) Integral of 1/(x^2-9)
  • Integral of x*e^(x*y)
  • Identical expressions

  • one /(x*sqrt(one -ln^2x))
  • 1 divide by (x multiply by square root of (1 minus ln squared x))
  • one divide by (x multiply by square root of (one minus ln squared x))
  • 1/(x*√(1-ln^2x))
  • 1/(x*sqrt(1-ln2x))
  • 1/x*sqrt1-ln2x
  • 1/(x*sqrt(1-ln²x))
  • 1/(x*sqrt(1-ln to the power of 2x))
  • 1/(xsqrt(1-ln^2x))
  • 1/(xsqrt(1-ln2x))
  • 1/xsqrt1-ln2x
  • 1/xsqrt1-ln^2x
  • 1 divide by (x*sqrt(1-ln^2x))
  • 1/(x*sqrt(1-ln^2x))dx
  • Similar expressions

  • 1/(x*sqrt(1+ln^2x))

Integral of 1/(x*sqrt(1-ln^2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /        2       
 |  x*\/  1 - log (x)    
 |                       
/                        
1                        
$$\int\limits_{1}^{e} \frac{1}{x \sqrt{1 - \log{\left(x \right)}^{2}}}\, dx$$
Integral(1/(x*sqrt(1 - log(x)^2)), (x, 1, E))
The answer (Indefinite) [src]
  /                              /                                    
 |                              |                                     
 |         1                    |                 1                   
 | ------------------ dx = C +  | --------------------------------- dx
 |      _____________           |     _____________________________   
 |     /        2               | x*\/ -(1 + log(x))*(-1 + log(x))    
 | x*\/  1 - log (x)            |                                     
 |                             /                                      
/                                                                     
$$\int \frac{1}{x \sqrt{1 - \log{\left(x \right)}^{2}}}\, dx = C + \int \frac{1}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)}}\, dx$$
The answer [src]
  E                                     
  /                                     
 |                                      
 |                  1                   
 |  --------------------------------- dx
 |      _____________________________   
 |  x*\/ -(1 + log(x))*(-1 + log(x))    
 |                                      
/                                       
1                                       
$$\int\limits_{1}^{e} \frac{1}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)}}\, dx$$
=
=
  E                                     
  /                                     
 |                                      
 |                  1                   
 |  --------------------------------- dx
 |      _____________________________   
 |  x*\/ -(1 + log(x))*(-1 + log(x))    
 |                                      
/                                       
1                                       
$$\int\limits_{1}^{e} \frac{1}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)}}\, dx$$
Integral(1/(x*sqrt(-(1 + log(x))*(-1 + log(x)))), (x, 1, E))
Numerical answer [src]
1.57079631684482
1.57079631684482

    Use the examples entering the upper and lower limits of integration.