5 / | | ____________ | \/ log(x) - 1 | -------------- dx | x | / E
Integral(sqrt(log(x) - 1)/x, (x, E, 5))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | ____________ 3/2 | \/ log(x) - 1 2*(-1 + log(x)) | -------------- dx = C + ------------------ | x 3 | /
3/2
2*(-1 + log(5))
------------------
3
=
3/2
2*(-1 + log(5))
------------------
3
2*(-1 + log(5))^(3/2)/3
(0.317177916876842 + 8.2241843732205e-26j)
(0.317177916876842 + 8.2241843732205e-26j)
Use the examples entering the upper and lower limits of integration.