Mister Exam

Other calculators

Integral of 1/x*sqrt(lnx-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5                  
  /                  
 |                   
 |    ____________   
 |  \/ log(x) - 1    
 |  -------------- dx
 |        x          
 |                   
/                    
E                    
$$\int\limits_{e}^{5} \frac{\sqrt{\log{\left(x \right)} - 1}}{x}\, dx$$
Integral(sqrt(log(x) - 1)/x, (x, E, 5))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 |   ____________                         3/2
 | \/ log(x) - 1           2*(-1 + log(x))   
 | -------------- dx = C + ------------------
 |       x                         3         
 |                                           
/                                            
$$\int \frac{\sqrt{\log{\left(x \right)} - 1}}{x}\, dx = C + \frac{2 \left(\log{\left(x \right)} - 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
               3/2
2*(-1 + log(5))   
------------------
        3         
$$\frac{2 \left(-1 + \log{\left(5 \right)}\right)^{\frac{3}{2}}}{3}$$
=
=
               3/2
2*(-1 + log(5))   
------------------
        3         
$$\frac{2 \left(-1 + \log{\left(5 \right)}\right)^{\frac{3}{2}}}{3}$$
2*(-1 + log(5))^(3/2)/3
Numerical answer [src]
(0.317177916876842 + 8.2241843732205e-26j)
(0.317177916876842 + 8.2241843732205e-26j)

    Use the examples entering the upper and lower limits of integration.