Mister Exam

Other calculators

Integral of (1/x)*(1/sqrt(1-(lnx)²)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /        2       
 |  x*\/  1 - log (x)    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{1 - \log{\left(x \right)}^{2}}}\, dx$$
Integral(1/(x*sqrt(1 - log(x)^2)), (x, 0, 1))
The answer (Indefinite) [src]
  /                              /                                    
 |                              |                                     
 |         1                    |                 1                   
 | ------------------ dx = C +  | --------------------------------- dx
 |      _____________           |     _____________________________   
 |     /        2               | x*\/ -(1 + log(x))*(-1 + log(x))    
 | x*\/  1 - log (x)            |                                     
 |                             /                                      
/                                                                     
$$\int \frac{1}{x \sqrt{1 - \log{\left(x \right)}^{2}}}\, dx = C + \int \frac{1}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)}}\, dx$$
The answer [src]
  1                                     
  /                                     
 |                                      
 |                  1                   
 |  --------------------------------- dx
 |      _____________________________   
 |  x*\/ -(1 + log(x))*(-1 + log(x))    
 |                                      
/                                       
0                                       
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)}}\, dx$$
=
=
  1                                     
  /                                     
 |                                      
 |                  1                   
 |  --------------------------------- dx
 |      _____________________________   
 |  x*\/ -(1 + log(x))*(-1 + log(x))    
 |                                      
/                                       
0                                       
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)}}\, dx$$
Integral(1/(x*sqrt(-(1 + log(x))*(-1 + log(x)))), (x, 0, 1))
Numerical answer [src]
(1.39206658078322 - 5.06878125385943j)
(1.39206658078322 - 5.06878125385943j)

    Use the examples entering the upper and lower limits of integration.