Mister Exam

Other calculators

Integral of 1/(x*(logx)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -1              
 e                
  /               
 |                
 |        1       
 |  1*--------- dx
 |         2      
 |    x*log (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{e^{-1}} 1 \cdot \frac{1}{x \log{\left(x \right)}^{2}}\, dx$$
Integral(1/(x*log(x)^2), (x, 0, exp(-1)))
The answer (Indefinite) [src]
  /                           
 |                            
 |       1                1   
 | 1*--------- dx = C - ------
 |        2             log(x)
 |   x*log (x)                
 |                            
/                             
$$\int 1 \cdot \frac{1}{x \log{\left(x \right)}^{2}}\, dx = C - \frac{1}{\log{\left(x \right)}}$$
The answer [src]
1
$$1$$
=
=
1
$$1$$
Numerical answer [src]
0.977822809095077
0.977822809095077

    Use the examples entering the upper and lower limits of integration.