Mister Exam

Other calculators

Integral of 1/(x*log(x-2)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |       2          
 |  x*log (x - 2)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{x \log{\left(x - 2 \right)}^{2}}\, dx$$
Integral(1/(x*log(x - 2)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                           /                                 
 |                           |                                  
 |       1                   |       1                 2 - x    
 | ------------- dx = C + 2* | -------------- dx + -------------
 |      2                    |  2                  x*log(-2 + x)
 | x*log (x - 2)             | x *log(-2 + x)                   
 |                           |                                  
/                           /                                   
$$\int \frac{1}{x \log{\left(x - 2 \right)}^{2}}\, dx = C + 2 \int \frac{1}{x^{2} \log{\left(x - 2 \right)}}\, dx + \frac{2 - x}{x \log{\left(x - 2 \right)}}$$
The answer [src]
                               1                       
                               /                       
                              |                        
         /      1      \      |        1             I 
- oo*sign|-------------| + 2* |  -------------- dx - --
         \pi*I + log(2)/      |   2                  pi
                              |  x *log(-2 + x)        
                              |                        
                             /                         
                             0                         
$$2 \int\limits_{0}^{1} \frac{1}{x^{2} \log{\left(x - 2 \right)}}\, dx - \frac{i}{\pi} - \infty \operatorname{sign}{\left(\frac{1}{\log{\left(2 \right)} + i \pi} \right)}$$
=
=
                               1                       
                               /                       
                              |                        
         /      1      \      |        1             I 
- oo*sign|-------------| + 2* |  -------------- dx - --
         \pi*I + log(2)/      |   2                  pi
                              |  x *log(-2 + x)        
                              |                        
                             /                         
                             0                         
$$2 \int\limits_{0}^{1} \frac{1}{x^{2} \log{\left(x - 2 \right)}}\, dx - \frac{i}{\pi} - \infty \operatorname{sign}{\left(\frac{1}{\log{\left(2 \right)} + i \pi} \right)}$$
-oo*sign(1/(pi*i + log(2))) + 2*Integral(1/(x^2*log(-2 + x)), (x, 0, 1)) - i/pi
Numerical answer [src]
(-3.88142669314496 - 1.76129664103813j)
(-3.88142669314496 - 1.76129664103813j)

    Use the examples entering the upper and lower limits of integration.