Mister Exam

Other calculators

Integral of 1/(x*lgx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0            
  /            
 |             
 |     1       
 |  -------- dx
 |  x*log(x)   
 |             
/              
0              
$$\int\limits_{0}^{0} \frac{1}{x \log{\left(x \right)}}\, dx$$
Integral(1/(x*log(x)), (x, 0, 0))
The answer (Indefinite) [src]
  /                             
 |                              
 |    1                         
 | -------- dx = C + log(log(x))
 | x*log(x)                     
 |                              
/                               
$$\int \frac{1}{x \log{\left(x \right)}}\, dx = C + \log{\left(\log{\left(x \right)} \right)}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.