Mister Exam

Other calculators

Integral of 1/(x-(x+lnx)^(1/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |      3 ____________   
 |  x - \/ x + log(x)    
 |                       
/                        
2                        
$$\int\limits_{2}^{\infty} \frac{1}{x - \sqrt[3]{x + \log{\left(x \right)}}}\, dx$$
Integral(1/(x - (x + log(x))^(1/3)), (x, 2, oo))
The answer [src]
 oo                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |      3 ____________   
 |  x - \/ x + log(x)    
 |                       
/                        
2                        
$$\int\limits_{2}^{\infty} \frac{1}{x - \sqrt[3]{x + \log{\left(x \right)}}}\, dx$$
=
=
 oo                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |      3 ____________   
 |  x - \/ x + log(x)    
 |                       
/                        
2                        
$$\int\limits_{2}^{\infty} \frac{1}{x - \sqrt[3]{x + \log{\left(x \right)}}}\, dx$$
Integral(1/(x - (x + log(x))^(1/3)), (x, 2, oo))

    Use the examples entering the upper and lower limits of integration.