Mister Exam

Other calculators

Integral of 1/((x-4)*sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 25                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |            ___   
 |  (x - 4)*\/ x    
 |                  
/                   
4                   
$$\int\limits_{4}^{25} \frac{1}{\sqrt{x} \left(x - 4\right)}\, dx$$
Integral(1/((x - 4)*sqrt(x)), (x, 4, 25))
The answer (Indefinite) [src]
                            //      /  ___\            \
                            ||      |\/ x |            |
                            ||-acoth|-----|            |
  /                         ||      \  2  /            |
 |                          ||--------------  for x > 4|
 |       1                  ||      2                  |
 | ------------- dx = C + 2*|<                         |
 |           ___            ||      /  ___\            |
 | (x - 4)*\/ x             ||      |\/ x |            |
 |                          ||-atanh|-----|            |
/                           ||      \  2  /            |
                            ||--------------  for x < 4|
                            \\      2                  /
$$\int \frac{1}{\sqrt{x} \left(x - 4\right)}\, dx = C + 2 \left(\begin{cases} - \frac{\operatorname{acoth}{\left(\frac{\sqrt{x}}{2} \right)}}{2} & \text{for}\: x > 4 \\- \frac{\operatorname{atanh}{\left(\frac{\sqrt{x}}{2} \right)}}{2} & \text{for}\: x < 4 \end{cases}\right)$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
21.4857471822213
21.4857471822213

    Use the examples entering the upper and lower limits of integration.