Mister Exam

Other calculators


1/(x(lnx)^(1/2))

Integral of 1/(x(lnx)^(1/2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                  
 e                   
  /                  
 |                   
 |         1         
 |  1*------------ dx
 |        ________   
 |    x*\/ log(x)    
 |                   
/                    
1                    
$$\int\limits_{1}^{e^{2}} 1 \cdot \frac{1}{x \sqrt{\log{\left(x \right)}}}\, dx$$
Integral(1/(x*sqrt(log(x))), (x, 1, exp(2)))
The answer (Indefinite) [src]
  /                                    
 |                                     
 |        1                    ________
 | 1*------------ dx = C + 2*\/ log(x) 
 |       ________                      
 |   x*\/ log(x)                       
 |                                     
/                                      
$$\int 1 \cdot \frac{1}{x \sqrt{\log{\left(x \right)}}}\, dx = C + 2 \sqrt{\log{\left(x \right)}}$$
The graph
The answer [src]
    ___
2*\/ 2 
$$2 \sqrt{2}$$
=
=
    ___
2*\/ 2 
$$2 \sqrt{2}$$
Numerical answer [src]
2.82842712305301
2.82842712305301
The graph
Integral of 1/(x(lnx)^(1/2)) dx

    Use the examples entering the upper and lower limits of integration.