Mister Exam

Other calculators


2*x*exp(-x)

Integral of 2*x*exp(-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |       -x   
 |  2*x*e   dx
 |            
/             
0             
012xexdx\int\limits_{0}^{1} 2 x e^{- x}\, dx
Integral((2*x)*exp(-x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute 2du2 du:

      2ueudu\int 2 u e^{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        ueudu=2ueudu\int u e^{u}\, du = 2 \int u e^{u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: 2ueu2eu2 u e^{u} - 2 e^{u}

      Now substitute uu back in:

      2xex2ex- 2 x e^{- x} - 2 e^{- x}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=2xu{\left(x \right)} = 2 x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{- x}.

      Then du(x)=2\operatorname{du}{\left(x \right)} = 2.

      To find v(x)v{\left(x \right)}:

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute du- du:

        (eu)du\int \left(- e^{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        ex- e^{- x}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (2ex)dx=2exdx\int \left(- 2 e^{- x}\right)\, dx = - 2 \int e^{- x}\, dx

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute du- du:

        (eu)du\int \left(- e^{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        ex- e^{- x}

      So, the result is: 2ex2 e^{- x}

  2. Now simplify:

    (2x+2)ex- \left(2 x + 2\right) e^{- x}

  3. Add the constant of integration:

    (2x+2)ex+constant- \left(2 x + 2\right) e^{- x}+ \mathrm{constant}


The answer is:

(2x+2)ex+constant- \left(2 x + 2\right) e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 |      -x             -x        -x
 | 2*x*e   dx = C - 2*e   - 2*x*e  
 |                                 
/                                  
2xexdx=C2xex2ex\int 2 x e^{- x}\, dx = C - 2 x e^{- x} - 2 e^{- x}
The graph
0.001.000.100.200.300.400.500.600.700.800.902.5-2.5
The answer [src]
       -1
2 - 4*e  
24e2 - \frac{4}{e}
=
=
       -1
2 - 4*e  
24e2 - \frac{4}{e}
2 - 4*exp(-1)
Numerical answer [src]
0.528482235314231
0.528482235314231
The graph
Integral of 2*x*exp(-x) dx

    Use the examples entering the upper and lower limits of integration.