Mister Exam

Other calculators


1/2xe^(-x/2)

Integral of 1/2xe^(-x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |     -x    
 |     ---   
 |      2    
 |  x*e      
 |  ------ dx
 |    2      
 |           
/            
0            
0xe(1)x22dx\int\limits_{0}^{\infty} \frac{x e^{\frac{\left(-1\right) x}{2}}}{2}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    xe(1)x22dx=xe(1)x2dx2\int \frac{x e^{\frac{\left(-1\right) x}{2}}}{2}\, dx = \frac{\int x e^{\frac{\left(-1\right) x}{2}}\, dx}{2}

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=xu{\left(x \right)} = x and let dv(x)=ex2\operatorname{dv}{\left(x \right)} = e^{- \frac{x}{2}}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=x2u = - \frac{x}{2}.

          Then let du=dx2du = - \frac{dx}{2} and substitute 2du- 2 du:

          4eudu\int 4 e^{u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2eu)du=2eudu\int \left(- 2 e^{u}\right)\, du = - 2 \int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: 2eu- 2 e^{u}

          Now substitute uu back in:

          2ex2- 2 e^{- \frac{x}{2}}

        Method #2

        1. Let u=ex2u = e^{- \frac{x}{2}}.

          Then let du=ex2dx2du = - \frac{e^{- \frac{x}{2}} dx}{2} and substitute 2du- 2 du:

          4du\int 4\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2)du=21du\int \left(-2\right)\, du = - 2 \int 1\, du

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: 2u- 2 u

          Now substitute uu back in:

          2ex2- 2 e^{- \frac{x}{2}}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (2ex2)dx=2ex2dx\int \left(- 2 e^{- \frac{x}{2}}\right)\, dx = - 2 \int e^{- \frac{x}{2}}\, dx

      1. Let u=x2u = - \frac{x}{2}.

        Then let du=dx2du = - \frac{dx}{2} and substitute 2du- 2 du:

        4eudu\int 4 e^{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2eu)du=2eudu\int \left(- 2 e^{u}\right)\, du = - 2 \int e^{u}\, du

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: 2eu- 2 e^{u}

        Now substitute uu back in:

        2ex2- 2 e^{- \frac{x}{2}}

      So, the result is: 4ex24 e^{- \frac{x}{2}}

    So, the result is: xex22ex2- x e^{- \frac{x}{2}} - 2 e^{- \frac{x}{2}}

  2. Now simplify:

    (x2)ex2\left(- x - 2\right) e^{- \frac{x}{2}}

  3. Add the constant of integration:

    (x2)ex2+constant\left(- x - 2\right) e^{- \frac{x}{2}}+ \mathrm{constant}


The answer is:

(x2)ex2+constant\left(- x - 2\right) e^{- \frac{x}{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 |    -x                          
 |    ---             -x       -x 
 |     2              ---      ---
 | x*e                 2        2 
 | ------ dx = C - 2*e    - x*e   
 |   2                            
 |                                
/                                 
(2x4)ex22{{\left(-2\,x-4\right)\,e^ {- {{x}\over{2}} }}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-4
The answer [src]
2
22
=
=
2
22
The graph
Integral of 1/2xe^(-x/2) dx

    Use the examples entering the upper and lower limits of integration.