Integral of 1/2xe^(-x/2) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2xe2(−1)xdx=2∫xe2(−1)xdx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=e−2x.
Then du(x)=1.
To find v(x):
-
There are multiple ways to do this integral.
Method #1
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2eu)du=−2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
Method #2
-
Let u=e−2x.
Then let du=−2e−2xdx and substitute −2du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2)du=−2∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: −2u
Now substitute u back in:
−2e−2x
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2e−2x)dx=−2∫e−2xdx
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2eu)du=−2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
So, the result is: 4e−2x
So, the result is: −xe−2x−2e−2x
-
Now simplify:
(−x−2)e−2x
-
Add the constant of integration:
(−x−2)e−2x+constant
The answer is:
(−x−2)e−2x+constant
The answer (Indefinite)
[src]
/
|
| -x
| --- -x -x
| 2 --- ---
| x*e 2 2
| ------ dx = C - 2*e - x*e
| 2
|
/
2(−2x−4)e−2x
The graph
Use the examples entering the upper and lower limits of integration.