Mister Exam

Other calculators

Integral of (1/2)^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2       
  /       
 |        
 |   -x   
 |  2   dx
 |        
/         
4         
$$\int\limits_{4}^{-2} \left(\frac{1}{2}\right)^{x}\, dx$$
Integral((1/2)^x, (x, 4, -2))
Detail solution
  1. Rewrite the integrand:

  2. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      So, the result is:

    Now substitute back in:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                   
 |                -x  
 |  -x           2    
 | 2   dx = C - ------
 |              log(2)
/                     
$$\int \left(\frac{1}{2}\right)^{x}\, dx = C - \frac{2^{- x}}{\log{\left(2 \right)}}$$
The graph
The answer [src]
   -63   
---------
16*log(2)
$$- \frac{63}{16 \log{\left(2 \right)}}$$
=
=
   -63   
---------
16*log(2)
$$- \frac{63}{16 \log{\left(2 \right)}}$$
-63/(16*log(2))
Numerical answer [src]
-5.68061172350029
-5.68061172350029

    Use the examples entering the upper and lower limits of integration.