Mister Exam

Other calculators

Integral of (1/(2sinx+cosx+2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  2*sin(x) + cos(x) + 2   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(2 \sin{\left(x \right)} + \cos{\left(x \right)}\right) + 2}\, dx$$
Integral(1/(2*sin(x) + cos(x) + 2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                
 |                                                                 
 |           1                       /       /x\\      /       /x\\
 | --------------------- dx = C - log|3 + tan|-|| + log|1 + tan|-||
 | 2*sin(x) + cos(x) + 2             \       \2//      \       \2//
 |                                                                 
/                                                                  
$$\int \frac{1}{\left(2 \sin{\left(x \right)} + \cos{\left(x \right)}\right) + 2}\, dx = C + \log{\left(\tan{\left(\frac{x}{2} \right)} + 1 \right)} - \log{\left(\tan{\left(\frac{x}{2} \right)} + 3 \right)}$$
The graph
The answer [src]
-log(3 + tan(1/2)) + log(3) + log(1 + tan(1/2))
$$- \log{\left(\tan{\left(\frac{1}{2} \right)} + 3 \right)} + \log{\left(\tan{\left(\frac{1}{2} \right)} + 1 \right)} + \log{\left(3 \right)}$$
=
=
-log(3 + tan(1/2)) + log(3) + log(1 + tan(1/2))
$$- \log{\left(\tan{\left(\frac{1}{2} \right)} + 3 \right)} + \log{\left(\tan{\left(\frac{1}{2} \right)} + 1 \right)} + \log{\left(3 \right)}$$
-log(3 + tan(1/2)) + log(3) + log(1 + tan(1/2))
Numerical answer [src]
0.268573370822316
0.268573370822316

    Use the examples entering the upper and lower limits of integration.