Integral of (1/(2sinx+cosx+2)) dx
The solution
The answer (Indefinite)
[src]
/
|
| 1 / /x\\ / /x\\
| --------------------- dx = C - log|3 + tan|-|| + log|1 + tan|-||
| 2*sin(x) + cos(x) + 2 \ \2// \ \2//
|
/
$$\int \frac{1}{\left(2 \sin{\left(x \right)} + \cos{\left(x \right)}\right) + 2}\, dx = C + \log{\left(\tan{\left(\frac{x}{2} \right)} + 1 \right)} - \log{\left(\tan{\left(\frac{x}{2} \right)} + 3 \right)}$$
-log(3 + tan(1/2)) + log(3) + log(1 + tan(1/2))
$$- \log{\left(\tan{\left(\frac{1}{2} \right)} + 3 \right)} + \log{\left(\tan{\left(\frac{1}{2} \right)} + 1 \right)} + \log{\left(3 \right)}$$
=
-log(3 + tan(1/2)) + log(3) + log(1 + tan(1/2))
$$- \log{\left(\tan{\left(\frac{1}{2} \right)} + 3 \right)} + \log{\left(\tan{\left(\frac{1}{2} \right)} + 1 \right)} + \log{\left(3 \right)}$$
-log(3 + tan(1/2)) + log(3) + log(1 + tan(1/2))
Use the examples entering the upper and lower limits of integration.