Mister Exam

Other calculators

Integral of 1/(2+4sin3x+cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |             1              
 |  ----------------------- dx
 |  2 + 4*sin(3*x) + cos(x)   
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \frac{1}{\left(4 \sin{\left(3 x \right)} + 2\right) + \cos{\left(x \right)}}\, dx$$
Integral(1/(2 + 4*sin(3*x) + cos(x)), (x, 0, 1))
The answer [src]
  1                           
  /                           
 |                            
 |             1              
 |  ----------------------- dx
 |  2 + 4*sin(3*x) + cos(x)   
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \frac{1}{4 \sin{\left(3 x \right)} + \cos{\left(x \right)} + 2}\, dx$$
=
=
  1                           
  /                           
 |                            
 |             1              
 |  ----------------------- dx
 |  2 + 4*sin(3*x) + cos(x)   
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \frac{1}{4 \sin{\left(3 x \right)} + \cos{\left(x \right)} + 2}\, dx$$
Integral(1/(2 + 4*sin(3*x) + cos(x)), (x, 0, 1))
Numerical answer [src]
0.192221542616298
0.192221542616298

    Use the examples entering the upper and lower limits of integration.