Mister Exam

Other calculators


1/(3x^2-12x+3)

Integral of 1/(3x^2-12x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |     2              
 |  3*x  - 12*x + 3   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\left(3 x^{2} - 12 x\right) + 3}\, dx$$
Integral(1/(3*x^2 - 12*x + 3), (x, 0, 1))
The answer (Indefinite) [src]
                            /            /  ___         \                    
                            |   ___      |\/ 3 *(-2 + x)|                    
                            |-\/ 3 *acoth|--------------|                    
                            |            \      3       /               2    
                            |-----------------------------  for (-2 + x)  > 3
                            |              3                                 
                            <                                                
                            |            /  ___         \                    
                            |   ___      |\/ 3 *(-2 + x)|                    
                            |-\/ 3 *atanh|--------------|                    
  /                         |            \      3       /               2    
 |                          |-----------------------------  for (-2 + x)  < 3
 |        1                 \              3                                 
 | --------------- dx = C + -------------------------------------------------
 |    2                                             3                        
 | 3*x  - 12*x + 3                                                           
 |                                                                           
/                                                                            
$$\int \frac{1}{\left(3 x^{2} - 12 x\right) + 3}\, dx = C + \frac{\begin{cases} - \frac{\sqrt{3} \operatorname{acoth}{\left(\frac{\sqrt{3} \left(x - 2\right)}{3} \right)}}{3} & \text{for}\: \left(x - 2\right)^{2} > 3 \\- \frac{\sqrt{3} \operatorname{atanh}{\left(\frac{\sqrt{3} \left(x - 2\right)}{3} \right)}}{3} & \text{for}\: \left(x - 2\right)^{2} < 3 \end{cases}}{3}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-0.765629040669032
-0.765629040669032
The graph
Integral of 1/(3x^2-12x+3) dx

    Use the examples entering the upper and lower limits of integration.