Mister Exam

Other calculators

Integral of 1/3+2cosx-sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  (1/3 + 2*cos(x) - sin(x)) dx
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \left(\left(2 \cos{\left(x \right)} + \frac{1}{3}\right) - \sin{\left(x \right)}\right)\, dx$$
Integral(1/3 + 2*cos(x) - sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                               x         
 | (1/3 + 2*cos(x) - sin(x)) dx = C + 2*sin(x) + - + cos(x)
 |                                               3         
/                                                          
$$\int \left(\left(2 \cos{\left(x \right)} + \frac{1}{3}\right) - \sin{\left(x \right)}\right)\, dx = C + \frac{x}{3} + 2 \sin{\left(x \right)} + \cos{\left(x \right)}$$
The graph
The answer [src]
-2/3 + 2*sin(1) + cos(1)
$$- \frac{2}{3} + \cos{\left(1 \right)} + 2 \sin{\left(1 \right)}$$
=
=
-2/3 + 2*sin(1) + cos(1)
$$- \frac{2}{3} + \cos{\left(1 \right)} + 2 \sin{\left(1 \right)}$$
-2/3 + 2*sin(1) + cos(1)
Numerical answer [src]
1.55657760881727
1.55657760881727

    Use the examples entering the upper and lower limits of integration.