Mister Exam

Other calculators

Integral of 1/(3+2cos(3x)-sin(3x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |              1               
 |  ------------------------- dx
 |  3 + 2*cos(3*x) - sin(3*x)   
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \frac{1}{\left(2 \cos{\left(3 x \right)} + 3\right) - \sin{\left(3 x \right)}}\, dx$$
Integral(1/(3 + 2*cos(3*x) - sin(3*x)), (x, 0, 1))
The answer (Indefinite) [src]
                                          /         /3*x\\           /  pi   3*x\
                                          |      tan|---||           |- -- + ---|
  /                                       |  1      \ 2 /|           |  2     2 |
 |                                    atan|- - + --------|   pi*floor|----------|
 |             1                          \  2      2    /           \    pi    /
 | ------------------------- dx = C + -------------------- + --------------------
 | 3 + 2*cos(3*x) - sin(3*x)                   3                      3          
 |                                                                               
/                                                                                
$$\int \frac{1}{\left(2 \cos{\left(3 x \right)} + 3\right) - \sin{\left(3 x \right)}}\, dx = C + \frac{\operatorname{atan}{\left(\frac{\tan{\left(\frac{3 x}{2} \right)}}{2} - \frac{1}{2} \right)}}{3} + \frac{\pi \left\lfloor{\frac{\frac{3 x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor}{3}$$
The graph
The answer [src]
      /1   tan(3/2)\            
  atan|- - --------|            
      \2      2    /   atan(1/2)
- ------------------ + ---------
          3                3    
$$\frac{\operatorname{atan}{\left(\frac{1}{2} \right)}}{3} - \frac{\operatorname{atan}{\left(\frac{1}{2} - \frac{\tan{\left(\frac{3}{2} \right)}}{2} \right)}}{3}$$
=
=
      /1   tan(3/2)\            
  atan|- - --------|            
      \2      2    /   atan(1/2)
- ------------------ + ---------
          3                3    
$$\frac{\operatorname{atan}{\left(\frac{1}{2} \right)}}{3} - \frac{\operatorname{atan}{\left(\frac{1}{2} - \frac{\tan{\left(\frac{3}{2} \right)}}{2} \right)}}{3}$$
-atan(1/2 - tan(3/2)/2)/3 + atan(1/2)/3
Numerical answer [src]
0.627652741237585
0.627652741237585

    Use the examples entering the upper and lower limits of integration.