Mister Exam

Other calculators

Integral of 1/(t×(ln(t))^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |        1       
 |  1*--------- dt
 |         2      
 |    t*log (t)   
 |                
/                 
0                 
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{t \log{\left(t \right)}^{2}}\, dt$$
Integral(1/(t*log(t)^2), (t, 0, 1))
The answer (Indefinite) [src]
  /                           
 |                            
 |       1                1   
 | 1*--------- dt = C - ------
 |        2             log(t)
 |   t*log (t)                
 |                            
/                             
$$-{{1}\over{\log t}}$$
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
1.38019561125665e+19
1.38019561125665e+19

    Use the examples entering the upper and lower limits of integration.