Mister Exam

Other calculators

Integral of 1/sqrt(x*lnx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                
  /                
 |                 
 |       1         
 |  ------------ dx
 |    __________   
 |  \/ x*log(x)    
 |                 
/                  
1                  
$$\int\limits_{1}^{2} \frac{1}{\sqrt{x \log{\left(x \right)}}}\, dx$$
Integral(1/(sqrt(x*log(x))), (x, 1, 2))
The answer [src]
                                      /    ___   ________\
      ___   ____       ___   ____     |I*\/ 2 *\/ log(2) |
- I*\/ 2 *\/ pi  + I*\/ 2 *\/ pi *erfc|------------------|
                                      \        2         /
$$- \sqrt{2} i \sqrt{\pi} + \sqrt{2} i \sqrt{\pi} \operatorname{erfc}{\left(\frac{\sqrt{2} i \sqrt{\log{\left(2 \right)}}}{2} \right)}$$
=
=
                                      /    ___   ________\
      ___   ____       ___   ____     |I*\/ 2 *\/ log(2) |
- I*\/ 2 *\/ pi  + I*\/ 2 *\/ pi *erfc|------------------|
                                      \        2         /
$$- \sqrt{2} i \sqrt{\pi} + \sqrt{2} i \sqrt{\pi} \operatorname{erfc}{\left(\frac{\sqrt{2} i \sqrt{\log{\left(2 \right)}}}{2} \right)}$$
-i*sqrt(2)*sqrt(pi) + i*sqrt(2)*sqrt(pi)*erfc(i*sqrt(2)*sqrt(log(2))/2)
Numerical answer [src]
1.87923856147791
1.87923856147791

    Use the examples entering the upper and lower limits of integration.