Mister Exam

Other calculators

Integral of 1/(sqrt(x)*(cbrt(x)+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |    ___ /3 ___    \   
 |  \/ x *\\/ x  + 1/   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x} \left(\sqrt[3]{x} + 1\right)}\, dx$$
Integral(1/(sqrt(x)*(x^(1/3) + 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                  
 |                                                   
 |         1                        /6 ___\     6 ___
 | ----------------- dx = C - 6*atan\\/ x / + 6*\/ x 
 |   ___ /3 ___    \                                 
 | \/ x *\\/ x  + 1/                                 
 |                                                   
/                                                    
$$\int \frac{1}{\sqrt{x} \left(\sqrt[3]{x} + 1\right)}\, dx = C + 6 \sqrt[6]{x} - 6 \operatorname{atan}{\left(\sqrt[6]{x} \right)}$$
The graph
The answer [src]
    3*pi
6 - ----
     2  
$$6 - \frac{3 \pi}{2}$$
=
=
    3*pi
6 - ----
     2  
$$6 - \frac{3 \pi}{2}$$
6 - 3*pi/2
Numerical answer [src]
1.28761101908473
1.28761101908473

    Use the examples entering the upper and lower limits of integration.