Mister Exam

Other calculators


1/sqrt(2x^2-x+3)

Integral of 1/sqrt(2x^2-x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |            1           
 |  1*----------------- dx
 |       ______________   
 |      /    2            
 |    \/  2*x  - x + 3    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{2 x^{2} - x + 3}}\, dx$$
Integral(1/sqrt(2*x^2 - x + 3), (x, 0, 1))
The answer (Indefinite) [src]
$${{{\rm asinh}\; \left({{4\,x-1}\over{\sqrt{23}}}\right)}\over{ \sqrt{2}}}$$
The graph
The answer [src]
           /  ____\              /    ____\
  ___      |\/ 23 |     ___      |3*\/ 23 |
\/ 2 *asinh|------|   \/ 2 *asinh|--------|
           \  23  /              \   23   /
------------------- + ---------------------
         2                      2          
$${{{\rm asinh}\; \left({{3}\over{\sqrt{23}}}\right)}\over{\sqrt{2}}} +{{{\rm asinh}\; \left({{1}\over{\sqrt{23}}}\right)}\over{\sqrt{2}}}$$
=
=
           /  ____\              /    ____\
  ___      |\/ 23 |     ___      |3*\/ 23 |
\/ 2 *asinh|------|   \/ 2 *asinh|--------|
           \  23  /              \   23   /
------------------- + ---------------------
         2                      2          
$$\frac{\sqrt{2} \operatorname{asinh}{\left(\frac{\sqrt{23}}{23} \right)}}{2} + \frac{\sqrt{2} \operatorname{asinh}{\left(\frac{3 \sqrt{23}}{23} \right)}}{2}$$
Numerical answer [src]
0.56401421867435
0.56401421867435
The graph
Integral of 1/sqrt(2x^2-x+3) dx

    Use the examples entering the upper and lower limits of integration.