Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^(2x) Integral of e^(2x)
  • Integral of cos^6(x) Integral of cos^6(x)
  • Integral of ctg(x)^4 Integral of ctg(x)^4
  • Integral of x^7*e^(x^4) Integral of x^7*e^(x^4)
  • Identical expressions

  • one /(sqrt(two pi))*e^(-x^ two /2)
  • 1 divide by ( square root of (2 Pi )) multiply by e to the power of ( minus x squared divide by 2)
  • one divide by ( square root of (two Pi )) multiply by e to the power of ( minus x to the power of two divide by 2)
  • 1/(√(2pi))*e^(-x^2/2)
  • 1/(sqrt(2pi))*e(-x2/2)
  • 1/sqrt2pi*e-x2/2
  • 1/(sqrt(2pi))*e^(-x²/2)
  • 1/(sqrt(2pi))*e to the power of (-x to the power of 2/2)
  • 1/(sqrt(2pi))e^(-x^2/2)
  • 1/(sqrt(2pi))e(-x2/2)
  • 1/sqrt2pie-x2/2
  • 1/sqrt2pie^-x^2/2
  • 1 divide by (sqrt(2pi))*e^(-x^2 divide by 2)
  • 1/(sqrt(2pi))*e^(-x^2/2)dx
  • Similar expressions

  • 1/(sqrt(2pi))*e^(x^2/2)

Integral of 1/(sqrt(2pi))*e^(-x^2/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      2      
 |    -x       
 |    ----     
 |     2       
 |   E         
 |  -------- dx
 |    ______   
 |  \/ 2*pi    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{e^{\frac{\left(-1\right) x^{2}}{2}}}{\sqrt{2 \pi}}\, dx$$
Integral(E^((-x^2)/2)/sqrt(2*pi), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |     2                             ___      /    ___\
 |   -x                ___   ____  \/ 2       |x*\/ 2 |
 |   ----            \/ 2 *\/ pi *--------*erf|-------|
 |    2                               ____    \   2   /
 |  E                             2*\/ pi              
 | -------- dx = C + ----------------------------------
 |   ______                          2                 
 | \/ 2*pi                                             
 |                                                     
/                                                      
$$\int \frac{e^{\frac{\left(-1\right) x^{2}}{2}}}{\sqrt{2 \pi}}\, dx = C + \frac{\sqrt{2} \sqrt{\pi} \frac{\sqrt{2}}{2 \sqrt{\pi}} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
The graph
The answer [src]
   /  ___\
   |\/ 2 |
erf|-----|
   \  2  /
----------
    2     
$$\frac{\operatorname{erf}{\left(\frac{\sqrt{2}}{2} \right)}}{2}$$
=
=
   /  ___\
   |\/ 2 |
erf|-----|
   \  2  /
----------
    2     
$$\frac{\operatorname{erf}{\left(\frac{\sqrt{2}}{2} \right)}}{2}$$
erf(sqrt(2)/2)/2
Numerical answer [src]
0.341344746068543
0.341344746068543

    Use the examples entering the upper and lower limits of integration.