1 / | | 1 | 1*------------- dx | __________ | / 2 | \/ 2 - 3*x | / 0
Integral(1/sqrt(2 - 3*x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(6)*sin(_theta)/3, rewritten=sqrt(3)/3, substep=ConstantRule(constant=sqrt(3)/3, context=sqrt(3)/3, symbol=_theta), restriction=(x > -sqrt(6)/3) & (x < sqrt(6)/3), context=1/sqrt(2 - 3*x**2), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
/ // / ___\ \ | || ___ |x*\/ 6 | | | 1 ||\/ 3 *asin|-------| / ___ ___\| | 1*------------- dx = C + |< \ 2 / | -\/ 6 \/ 6 || | __________ ||------------------- for And|x > -------, x < -----|| | / 2 || 3 \ 3 3 /| | \/ 2 - 3*x \\ / | /
/ ___\
___ |\/ 6 |
\/ 3 *asin|-----|
\ 2 /
-----------------
3
=
/ ___\
___ |\/ 6 |
\/ 3 *asin|-----|
\ 2 /
-----------------
3
(0.897124945273862 - 0.344125471092143j)
(0.897124945273862 - 0.344125471092143j)
Use the examples entering the upper and lower limits of integration.