Mister Exam

Other calculators

Integral of 1/sqrt(10-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                
  /                
 |                 
 |       1         
 |  ------------ dx
 |    __________   
 |  \/ 10 - 3*x    
 |                 
/                  
1/3                
1331103xdx\int\limits_{\frac{1}{3}}^{3} \frac{1}{\sqrt{10 - 3 x}}\, dx
Integral(1/(sqrt(10 - 3*x)), (x, 1/3, 3))
Detail solution
  1. Let u=103xu = \sqrt{10 - 3 x}.

    Then let du=3dx2103xdu = - \frac{3 dx}{2 \sqrt{10 - 3 x}} and substitute 2du3- \frac{2 du}{3}:

    (23)du\int \left(- \frac{2}{3}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      False\text{False}

      1. The integral of a constant is the constant times the variable of integration:

        1du=u\int 1\, du = u

      So, the result is: 2u3- \frac{2 u}{3}

    Now substitute uu back in:

    2103x3- \frac{2 \sqrt{10 - 3 x}}{3}

  2. Add the constant of integration:

    2103x3+constant- \frac{2 \sqrt{10 - 3 x}}{3}+ \mathrm{constant}


The answer is:

2103x3+constant- \frac{2 \sqrt{10 - 3 x}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                           __________
 |      1                2*\/ 10 - 3*x 
 | ------------ dx = C - --------------
 |   __________                3       
 | \/ 10 - 3*x                         
 |                                     
/                                      
1103xdx=C2103x3\int \frac{1}{\sqrt{10 - 3 x}}\, dx = C - \frac{2 \sqrt{10 - 3 x}}{3}
The graph
3.000.500.751.001.251.501.752.002.252.502.755-5
The answer [src]
4/3
43\frac{4}{3}
=
=
4/3
43\frac{4}{3}
4/3
Numerical answer [src]
1.33333333333333
1.33333333333333

    Use the examples entering the upper and lower limits of integration.