Mister Exam

Other calculators

Integral of 1/sqrt(1/(p^2-1)) dp

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |           1          
 |  1*--------------- dp
 |         __________   
 |        /     1       
 |       /  1*------    
 |      /      2        
 |    \/      p  - 1    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{1 \cdot \frac{1}{p^{2} - 1}}}\, dp$$
Integral(1/sqrt(1/(p^2 - 1*1)), (p, 0, 1))
The answer (Indefinite) [src]
$${{p\,\sqrt{p^2-1}}\over{2}}-{{\log \left(2\,\sqrt{p^2-1}+2\,p \right)}\over{2}}$$
The answer [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dp
 |       _________   
 |      /    1       
 |     /  -------    
 |    /         2    
 |  \/    -1 + p     
 |                   
/                    
0                    
$${{\log \left(2\,i\right)}\over{2}}-{{\log 2}\over{2}}$$
=
=
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dp
 |       _________   
 |      /    1       
 |     /  -------    
 |    /         2    
 |  \/    -1 + p     
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\frac{1}{p^{2} - 1}}}\, dp$$
Numerical answer [src]
(0.0 - 0.785398163397448j)
(0.0 - 0.785398163397448j)

    Use the examples entering the upper and lower limits of integration.