Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of sinx Integral of sinx
  • Integral of cosx^2 Integral of cosx^2
  • Integral of sinh(x) Integral of sinh(x)
  • Integral of xcos(nx)
  • Identical expressions

  • one /sqrt(2tgx+1cos^2x)
  • 1 divide by square root of (2tgx plus 1 co sinus of e of squared x)
  • one divide by square root of (2tgx plus 1 co sinus of e of squared x)
  • 1/√(2tgx+1cos^2x)
  • 1/sqrt(2tgx+1cos2x)
  • 1/sqrt2tgx+1cos2x
  • 1/sqrt(2tgx+1cos²x)
  • 1/sqrt(2tgx+1cos to the power of 2x)
  • 1/sqrt2tgx+1cos^2x
  • 1 divide by sqrt(2tgx+1cos^2x)
  • 1/sqrt(2tgx+1cos^2x)dx
  • Similar expressions

  • 1/sqrt(2tgx-1cos^2x)

Integral of 1/sqrt(2tgx+1cos^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |             1              
 |  ----------------------- dx
 |     ____________________   
 |    /               2       
 |  \/  2*tan(x) + cos (x)    
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\cos^{2}{\left(x \right)} + 2 \tan{\left(x \right)}}}\, dx$$
Integral(1/(sqrt(2*tan(x) + cos(x)^2)), (x, 0, 1))
The answer [src]
  1                           
  /                           
 |                            
 |             1              
 |  ----------------------- dx
 |     ____________________   
 |    /    2                  
 |  \/  cos (x) + 2*tan(x)    
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\cos^{2}{\left(x \right)} + 2 \tan{\left(x \right)}}}\, dx$$
=
=
  1                           
  /                           
 |                            
 |             1              
 |  ----------------------- dx
 |     ____________________   
 |    /    2                  
 |  \/  cos (x) + 2*tan(x)    
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\cos^{2}{\left(x \right)} + 2 \tan{\left(x \right)}}}\, dx$$
Integral(1/sqrt(cos(x)^2 + 2*tan(x)), (x, 0, 1))
Numerical answer [src]
0.74234421721455
0.74234421721455

    Use the examples entering the upper and lower limits of integration.