Mister Exam

Other calculators

Integral of 1/(sinx+cosx)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |                   2   
 |  (sin(x) + cos(x))    
 |                       
/                        
0                        
$$\int\limits_{0}^{\infty} \frac{1}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}\, dx$$
Integral(1/((sin(x) + cos(x))^2), (x, 0, oo))
The answer (Indefinite) [src]
  /                                         /x\       
 |                                     2*tan|-|       
 |         1                                \2/       
 | ------------------ dx = C - -----------------------
 |                  2                  2/x\        /x\
 | (sin(x) + cos(x))           -1 + tan |-| - 2*tan|-|
 |                                      \2/        \2/
/                                                     
$$\int \frac{1}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}\, dx = C - \frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} - 2 \tan{\left(\frac{x}{2} \right)} - 1}$$
The answer [src]
 oo                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |                   2   
 |  (cos(x) + sin(x))    
 |                       
/                        
0                        
$$\int\limits_{0}^{\infty} \frac{1}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}\, dx$$
=
=
 oo                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |                   2   
 |  (cos(x) + sin(x))    
 |                       
/                        
0                        
$$\int\limits_{0}^{\infty} \frac{1}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}\, dx$$
Integral((cos(x) + sin(x))^(-2), (x, 0, oo))

    Use the examples entering the upper and lower limits of integration.