Mister Exam

Other calculators


1/sin^2(x)cos(x)

Integral of 1/sin^2(x)cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1047                   
 ----                   
 1000                   
   /                    
  |                     
  |       1             
  |  1*-------*cos(x) dx
  |       2             
  |    sin (x)          
  |                     
 /                      
523                     
----                    
1000                    
$$\int\limits_{\frac{523}{1000}}^{\frac{1047}{1000}} 1 \cdot \frac{1}{\sin^{2}{\left(x \right)}} \cos{\left(x \right)}\, dx$$
Integral(1*cos(x)/sin(x)^2, (x, 523/1000, 1047/1000))
The answer (Indefinite) [src]
  /                                
 |                                 
 |      1                      1   
 | 1*-------*cos(x) dx = C - ------
 |      2                    sin(x)
 |   sin (x)                       
 |                                 
/                                  
$$-{{1}\over{\sin x}}$$
The graph
The answer [src]
    1           1    
--------- - ---------
   /523 \      /1047\
sin|----|   sin|----|
   \1000/      \1000/
$${{1}\over{\sin \left({{523}\over{1000}}\right)}}-{{1}\over{\sin \left({{1047}\over{1000}}\right)}}$$
=
=
    1           1    
--------- - ---------
   /523 \      /1047\
sin|----|   sin|----|
   \1000/      \1000/
$$- \frac{1}{\sin{\left(\frac{1047}{1000} \right)}} + \frac{1}{\sin{\left(\frac{523}{1000} \right)}}$$
Numerical answer [src]
0.847244455360491
0.847244455360491
The graph
Integral of 1/sin^2(x)cos(x) dx

    Use the examples entering the upper and lower limits of integration.