Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/(x^2+3x+2) Integral of 1/(x^2+3x+2)
  • Integral of cosecx Integral of cosecx
  • Integral of sin(e^x) Integral of sin(e^x)
  • Integral of log(x)^3/x
  • Identical expressions

  • one /sin^2x*sqrt(ctgx+ one)
  • 1 divide by sinus of squared x multiply by square root of (ctgx plus 1)
  • one divide by sinus of squared x multiply by square root of (ctgx plus one)
  • 1/sin^2x*√(ctgx+1)
  • 1/sin2x*sqrt(ctgx+1)
  • 1/sin2x*sqrtctgx+1
  • 1/sin²x*sqrt(ctgx+1)
  • 1/sin to the power of 2x*sqrt(ctgx+1)
  • 1/sin^2xsqrt(ctgx+1)
  • 1/sin2xsqrt(ctgx+1)
  • 1/sin2xsqrtctgx+1
  • 1/sin^2xsqrtctgx+1
  • 1 divide by sin^2x*sqrt(ctgx+1)
  • 1/sin^2x*sqrt(ctgx+1)dx
  • Similar expressions

  • 1/sin^2x*sqrt(ctgx-1)

Integral of 1/sin^2x*sqrt(ctgx+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |       1      ____________   
 |  1*-------*\/ cot(x) + 1  dx
 |       2                     
 |    sin (x)                  
 |                             
/                              
0                              
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sin^{2}{\left(x \right)}} \sqrt{\cot{\left(x \right)} + 1}\, dx$$
Integral(1*sqrt(cot(x) + 1)/sin(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
                                       /                 
  /                                   |                  
 |                                    |   ____________   
 |      1      ____________           | \/ 1 + cot(x)    
 | 1*-------*\/ cot(x) + 1  dx = C +  | -------------- dx
 |      2                             |       2          
 |   sin (x)                          |    sin (x)       
 |                                    |                  
/                                    /                   
$$-{{2\,\left({{1}\over{\tan x}}+1\right)^{{{3}\over{2}}}}\over{3}}$$
The answer [src]
  1                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 + cot(x)    
 |  -------------- dx
 |        2          
 |     sin (x)       
 |                   
/                    
0                    
$${\it \%a}$$
=
=
  1                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 + cot(x)    
 |  -------------- dx
 |        2          
 |     sin (x)       
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(x \right)} + 1}}{\sin^{2}{\left(x \right)}}\, dx$$
Numerical answer [src]
3.36577867925869e+28
3.36577867925869e+28

    Use the examples entering the upper and lower limits of integration.