Mister Exam

Other calculators

Integral of 1/(sin^3xxosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |           1           
 |  1*---------------- dx
 |       3               
 |    sin (x*x)*cos(x)   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sin^{3}{\left(x x \right)} \cos{\left(x \right)}}\, dx$$
Integral(1/(sin(x*x)^3*cos(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                              /                  
 |                              |                   
 |          1                   |        1          
 | 1*---------------- dx = C +  | --------------- dx
 |      3                       |           3/ 2\   
 |   sin (x*x)*cos(x)           | cos(x)*sin \x /   
 |                              |                   
/                              /                    
$$\int 1 \cdot \frac{1}{\sin^{3}{\left(x x \right)} \cos{\left(x \right)}}\, dx = C + \int \frac{1}{\sin^{3}{\left(x^{2} \right)} \cos{\left(x \right)}}\, dx$$
The answer [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |            3/ 2\   
 |  cos(x)*sin \x /   
 |                    
/                     
0                     
$$\int_{0}^{1}{{{1}\over{\cos x\,\sin ^3x^2}}\;dx}$$
=
=
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |            3/ 2\   
 |  cos(x)*sin \x /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sin^{3}{\left(x^{2} \right)} \cos{\left(x \right)}}\, dx$$
Numerical answer [src]
7.0110751903966e+94
7.0110751903966e+94

    Use the examples entering the upper and lower limits of integration.