Mister Exam

Integral of sech(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  sech(x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \operatorname{sech}{\left(x \right)}\, dx$$
Integral(sech(x), (x, 0, 1))
The answer [src]
  1           
  /           
 |            
 |  sech(x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \operatorname{sech}{\left(x \right)}\, dx$$
=
=
  1           
  /           
 |            
 |  sech(x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \operatorname{sech}{\left(x \right)}\, dx$$
Integral(sech(x), (x, 0, 1))
Numerical answer [src]
0.865769483239659
0.865769483239659

    Use the examples entering the upper and lower limits of integration.