Integral of 1/(sin(4x)+3) dx
The solution
The answer (Indefinite)
[src]
/ / pi\ \
| |2*x - --| / ___ ___ \|
/ ___ | | 2 | |\/ 2 3*\/ 2 *tan(2*x)||
| \/ 2 *|pi*floor|--------| + atan|----- + ----------------||
| 1 \ \ pi / \ 4 4 //
| ------------ dx = C + -----------------------------------------------------------
| sin(4*x) + 3 8
|
/
∫sin(4x)+31dx=C+82(atan(432tan(2x)+42)+π⌊π2x−2π⌋)
The graph
/ / ___\\ / ___ ___ \
___ | |\/ 2 || ___ |\/ 2 3*\/ 2 *tan(2)|
\/ 2 *|-pi + atan|-----|| \/ 2 *atan|----- + --------------|
\ \ 4 // \ 4 4 /
- ------------------------- + ----------------------------------
8 8
82atan(432tan(2)+42)−82(−π+atan(42))
=
/ / ___\\ / ___ ___ \
___ | |\/ 2 || ___ |\/ 2 3*\/ 2 *tan(2)|
\/ 2 *|-pi + atan|-----|| \/ 2 *atan|----- + --------------|
\ \ 4 // \ 4 4 /
- ------------------------- + ----------------------------------
8 8
82atan(432tan(2)+42)−82(−π+atan(42))
-sqrt(2)*(-pi + atan(sqrt(2)/4))/8 + sqrt(2)*atan(sqrt(2)/4 + 3*sqrt(2)*tan(2)/4)/8
Use the examples entering the upper and lower limits of integration.