Mister Exam

Integral of 1/pi dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi      
 --      
 2       
  /      
 |       
 |  1    
 |  -- dx
 |  pi   
 |       
/        
0        
0π21πdx\int\limits_{0}^{\frac{\pi}{2}} \frac{1}{\pi}\, dx
Integral(1/pi, (x, 0, pi/2))
Detail solution
  1. The integral of a constant is the constant times the variable of integration:

    1πdx=xπ\int \frac{1}{\pi}\, dx = \frac{x}{\pi}

  2. Add the constant of integration:

    xπ+constant\frac{x}{\pi}+ \mathrm{constant}


The answer is:

xπ+constant\frac{x}{\pi}+ \mathrm{constant}

The answer (Indefinite) [src]
  /              
 |               
 | 1           x 
 | -- dx = C + --
 | pi          pi
 |               
/                
1πdx=C+xπ\int \frac{1}{\pi}\, dx = C + \frac{x}{\pi}
The graph
0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.50.01.0
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5

    Use the examples entering the upper and lower limits of integration.