Mister Exam

Other calculators

Integral of 1/(1000+6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |  1000 + 6*x   
 |               
/                
0                
0116x+1000dx\int\limits_{0}^{1} \frac{1}{6 x + 1000}\, dx
Integral(1/(1000 + 6*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=6x+1000u = 6 x + 1000.

      Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

      16udu\int \frac{1}{6 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu6\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{6}

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)6\frac{\log{\left(u \right)}}{6}

      Now substitute uu back in:

      log(6x+1000)6\frac{\log{\left(6 x + 1000 \right)}}{6}

    Method #2

    1. Rewrite the integrand:

      16x+1000=12(3x+500)\frac{1}{6 x + 1000} = \frac{1}{2 \left(3 x + 500\right)}

    2. The integral of a constant times a function is the constant times the integral of the function:

      12(3x+500)dx=13x+500dx2\int \frac{1}{2 \left(3 x + 500\right)}\, dx = \frac{\int \frac{1}{3 x + 500}\, dx}{2}

      1. Let u=3x+500u = 3 x + 500.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        13udu\int \frac{1}{3 u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          1udu=1udu3\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{3}

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)3\frac{\log{\left(u \right)}}{3}

        Now substitute uu back in:

        log(3x+500)3\frac{\log{\left(3 x + 500 \right)}}{3}

      So, the result is: log(3x+500)6\frac{\log{\left(3 x + 500 \right)}}{6}

  2. Add the constant of integration:

    log(6x+1000)6+constant\frac{\log{\left(6 x + 1000 \right)}}{6}+ \mathrm{constant}


The answer is:

log(6x+1000)6+constant\frac{\log{\left(6 x + 1000 \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |     1               log(1000 + 6*x)
 | ---------- dx = C + ---------------
 | 1000 + 6*x                 6       
 |                                    
/                                     
16x+1000dx=C+log(6x+1000)6\int \frac{1}{6 x + 1000}\, dx = C + \frac{\log{\left(6 x + 1000 \right)}}{6}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
  log(1000)   log(1006)
- --------- + ---------
      6           6    
log(1000)6+log(1006)6- \frac{\log{\left(1000 \right)}}{6} + \frac{\log{\left(1006 \right)}}{6}
=
=
  log(1000)   log(1006)
- --------- + ---------
      6           6    
log(1000)6+log(1006)6- \frac{\log{\left(1000 \right)}}{6} + \frac{\log{\left(1006 \right)}}{6}
-log(1000)/6 + log(1006)/6
Numerical answer [src]
0.000997011946257911
0.000997011946257911

    Use the examples entering the upper and lower limits of integration.