Mister Exam

Other calculators

Integral of 1/(1000+6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |  1000 + 6*x   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{6 x + 1000}\, dx$$
Integral(1/(1000 + 6*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |     1               log(1000 + 6*x)
 | ---------- dx = C + ---------------
 | 1000 + 6*x                 6       
 |                                    
/                                     
$$\int \frac{1}{6 x + 1000}\, dx = C + \frac{\log{\left(6 x + 1000 \right)}}{6}$$
The graph
The answer [src]
  log(1000)   log(1006)
- --------- + ---------
      6           6    
$$- \frac{\log{\left(1000 \right)}}{6} + \frac{\log{\left(1006 \right)}}{6}$$
=
=
  log(1000)   log(1006)
- --------- + ---------
      6           6    
$$- \frac{\log{\left(1000 \right)}}{6} + \frac{\log{\left(1006 \right)}}{6}$$
-log(1000)/6 + log(1006)/6
Numerical answer [src]
0.000997011946257911
0.000997011946257911

    Use the examples entering the upper and lower limits of integration.