Integral of 1/(1000+6x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=6x+1000.
Then let du=6dx and substitute 6du:
∫6u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=6∫u1du
-
The integral of u1 is log(u).
So, the result is: 6log(u)
Now substitute u back in:
6log(6x+1000)
Method #2
-
Rewrite the integrand:
6x+10001=2(3x+500)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(3x+500)1dx=2∫3x+5001dx
-
Let u=3x+500.
Then let du=3dx and substitute 3du:
∫3u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=3∫u1du
-
The integral of u1 is log(u).
So, the result is: 3log(u)
Now substitute u back in:
3log(3x+500)
So, the result is: 6log(3x+500)
-
Add the constant of integration:
6log(6x+1000)+constant
The answer is:
6log(6x+1000)+constant
The answer (Indefinite)
[src]
/
|
| 1 log(1000 + 6*x)
| ---------- dx = C + ---------------
| 1000 + 6*x 6
|
/
∫6x+10001dx=C+6log(6x+1000)
The graph
log(1000) log(1006)
- --------- + ---------
6 6
−6log(1000)+6log(1006)
=
log(1000) log(1006)
- --------- + ---------
6 6
−6log(1000)+6log(1006)
-log(1000)/6 + log(1006)/6
Use the examples entering the upper and lower limits of integration.